

Software Testing Plan
04/08/2018
Version 1.0

Team​: Nimbus Technology

Sponsor​: IBM

Faculty Mentor​: Austin Sanders

Team Members​:
Itreau Bigsby

Matthew Cocchi
Richard “Riley” Deen

Benjamin George

1 / 24

Table of Contents

1) Introduction 2

2) Unit Testing 3

3) Integration Testing 19

4) Usability Testing 22

5) Conclusion 24

2 / 24

1 Introduction

In the industry of cloud services, one of those most commonly used services is data
storage, provided by vendors such as Amazon Web Services (AWS) or Microsoft. This cloud
storage tends to come with little in the way of storage ​management​, which is instead offered by
other vendors like IBM, whose Spectrum Protect Server Development department has
contracted this project with us.

One of the key services that Spectrum Protect offers is the ability to reduce a client’s
data storage consumption without losing any actual data, making these services quite lucrative
for clients. Spectrum Protect have recently come upon an idea for a new way to further reduce a
client’s cloud storage: mark data as “expired” based on whether or not any other data in the
cloud storage is reliant on it, and then remove all expired data.

This process is referred to as reclamation, and we are building a product which will
automate the process of reclamation for Spectrum Protect. This will include a backend service
that handles the actual process of reclamation, a frontend UI to display reclamation statistics
(such as storage and monetary savings), a database to store metadata files about the reclaimed
files, and the ability to communicate with Amazon Web Services’ S3 cloud data storage service.

Having finished the implementation of this product, we are moving into testing it to

ensure that it will satisfy Spectrum Protect’s goals and properly handle any input with no error.
This software testing will occur in three steps:

● Unit Testing: Ensuring that each “unit” of code behaves correctly with any given
input. The scope of a “unit” of code can vary from project to project, but in our
case a unit will refer to a single function. All of our functions will be tested to
verify that they return correct values for valid inputs, and do not fail or cause the
program to crash when given invalid inputs.

● Integration Testing: Ensuring that the different modules and components of the
project are communicating with each other correctly. Our product is composed of
a series of components and modules which provide the resources and services
requested by end-users. All of these components and modules will need to be
tested to verify that they pass data between themselves correctly, and verify that
the entire system as a whole is working correctly.

● Usability Testing: Testing our frontend UI with an audience to ensure that the
design of our frontend is easy to navigate for end-users within our intended target
audience. This will involve testing the arrangement and design of frontend display
elements, as well as testing sample users’ ability to find specific resources that
are not immediately available in the display.

3 / 24

This project is mostly focused on the backend computation processes, and less focused
on the frontend. To add to this, the frontend is intended for an audience for IBM administrative
employees who will have a fair level of technical experience, meaning our frontend design does
not have to be particularly intuitive or non-technical. For these reasons our testing is primarily
focused on unit and integration testing.

First we must make sure that all of our code functions correctly and reliably, especially
seeing as, if our product should do anything wrong and incorrectly erase IBM clients’ data, IBM
will be held liable and their reputation will be damaged. Second, we will ensure that all of the
components that compose our product can communicate correctly, since our software must be
able to interact with S3 cloud storage as well as a database. Finally, we want to do some
minimal usability testing to at least ensure that our product will be usable by IBM employees
with little to no trouble. With this testing regimen laid out, we now cover our plan for unit testing.

2 Unit Testing

Having outlined the strategy and rationale behind our testing, we now explore in more
depth the question of unit testing our software. As with any unit testing, our tests will be based
on:

● Equivalence partitions: Broad categories of input for a tested unit, for which the output
produced in response to inputs from the same partition is also the same.

● Boundary values: “Extreme” inputs which stress the ability of our software to handle any
input--properly formed or not.

● Example input: The input given to a unit that is being tested.
● Expected output: The output that should be produced by a tested unit in response to a

given example input.

In considering unit testing, we decided to focus exclusively on the backend of our
software, since that is where all of the operations and inputs will actually occur. The frontend
takes no inputs beyond what is fed to it by the backend (as a response to requests for data
pertaining to containers and reclamation), and consists of small Javascript components that
perform no logic or computation other than “display this data here.” As such, our unit testing is
focused on the backend, where the real logic of our application occurs, and where variable
inputs could cause issues if not handled properly.

With this in mind, we break the backend down into the following groups of modules:
● Analysis: Modules responsible for analyzing and tracking statistics on containers for

which requests to reclaim have been received.
● Loggers: Modules which log activities pertaining to reclamation requests.
● Talkers: Modules which handle connecting the backend to the other components of our

system (AWS, MongoDB, and the frontend). These modules are covered more in
integration testing.

4 / 24

● Handler: The most front-facing module of the backend, through which requests to
reclaim a container or for frontend data are received.

● Reclamation: Modules which handle the actual process of reclaiming a container.
● Core: The module that is responsible for communicating with the other backend

modules; acts as a driver for all backend functionality.

Some of these modules, particularly those that communicate with AWS or MongoDB,
consist primarily of functions that are simply thin wrappers for functions provided by outside
libraries (e.g. Amazon’s AWS Go SDK). In such cases we can only control whether or not we
are supplying those functions with correct data; whether they return correct data is out of the
scope of our project, and thus we won’t be concerned with such issues.

Fortunately, Go provides a testing package (aptly named “testing”) that simplifies the
creating and running of unit tests. However the designers of Go have intentionally left a
common unit testing construct out of the testing package: Assert statements, which allow for
quick checking of conditions. This has a silver lining effect of forcing us to create our tests in
more detail, such that we explicitly check the passing and failing conditions ourselves. All of our
unit tests will be conducted in this manner, with a separate test file for each module.
Additionally, it is standard practice when writing code in Go to have all functions return, in
addition to their intended returns, an error value indicating whether or not anything went wrong
during the course of the function. Since these error returns can ripple up a chain of function
calls, this ensures that an error that occurs a low level of execution can be caught there and
handled at a higher level, allowing us to handle all errors gracefully.

For each category of module, we consider each module in that category and put all of
the testing criteria for that module into a table that shows what inputs we expect the module to
take and corresponding outputs we expect it to produce. These tables are each followed by a
section explaining the rationale of our testing criteria, such as equivalence partitions and
boundary values.

Analysis

This is a pair of modules, cbAnalyze and cbStats, which perform the task of analyzing a
container’s metadata to decide whether that container meets the threshold of expired data and
is worth reclaiming. In addition, these modules gather useful statistics which are displayed in the
frontend such as fragmentation percentage (different from typical hard drive fragmentation; this
simply refers to the percentage of a container’s contents which is expired) and total data
reclaimed.

The functions that compose these modules will be tested as shown in the tables that
follow:

5 / 24

cbAnalyze:

Function Name Equivalence
Partitions

Boundary Values Example Input Expected Output

setMinimumBytes < 0,
≥ 0 and ≤ 2^30,
> 2^30

-1,
1000,
(2^30) + 1

-1 Exception

 1000 N/A

 (2^30) + 1 Exception

getMinimumBytes N/A N/A N/A Int, the minimum
number of bytes to
trigger reclamation

performAnalysis Container with at least
minimumBytes expired
bytes,
Container with less
than minimumBytes
expired bytes,
Malformed container

Container with exactly
minimumBytes
expired bytes,
Container with 0
expired bytes,
Malformed container

Container with
exactly
minimumBytes
expired bytes

True, indicating that
the container meets
the threshold and
should be reclaimed

 Container with 0
expired bytes

False, indicating
that the container
does not meet the
threshold and
should not be
reclaimed

 Malformed
container

Exception

The rationale for these testing criteria is as follows:

● setMinimumBytes: The minimum bytes in question here is the minimum number of bytes
in a container that must be expired to trigger reclamation of the container. Since a
container can’t have a negative file size, values below zero are invalid. Likewise, the
maximum file size of a container is one gigabyte, or 2​30​ bytes, thus any value greater
than 2​30​ is invalid. Any value greater than or equal to zero and less than or equal to 2​30​ is
acceptable.

● getMinimumBytes: This function takes no input, and simply returns the minimum bytes
value discussed above.

● performAnalysis: This function takes as input a struct which holds metadata on a single
container. This metadata describes, among other things, the amount of data in the
container that is expired. Either that amount is less than the minimum bytes required to
trigger reclamation, in which case the function returns false, or that amount is greater
than or equal to the minimum bytes required to trigger reclamation, in which case the
function returns true. However if the container struct is malformed, perhaps missing
certain attributes, then analyzing the container for potential reclamation is pointless, in
which case the function throws an exception.

6 / 24

cbStats:

Function Name Equivalence
Partitions

Boundary Values Example Input Expected Output

setTotalBytes < 0,
≥ 0

-1,
0

-1 Exception

 0 N/A

getTotalBytes N/A N/A N/A Int, the number of
bytes of data thus
far analyzed

setReclaimedBytes < 0,
≥ 0

-1,
0

-1 Exception

 0 N/A

getReclaimedBytes N/A N/A N/A Int, the number of
bytes of data thus
far reclaimed

setTotalChunks < 0,
≥ 0

-1,
0

-1 Exception

 0 N/A

getTotalChunks N/A N/A N/A Int, the number of
chunks thus far
analyzed

getFragPercent N/A N/A N/A Float32, the
proportion of a
container’s contents
which are expired

getBytesInContainer N/A N/A N/A Int, the number of
bytes currently in a
container

getAmountSaved N/A N/A N/A Float32, amount of
money saved
through
reclamation, in USD

The rationale for these testing criteria is as follows:

● All of these functions are responsible for tracking statistics on containers analyzed and
reclaimed. All of the “set” functions update a certain statistic, while the corresponding
“get” functions return the values of those statistics.

● “set” functions: It is not possible to have tracked a negative amount of bytes, so values
below zero are invalid for all of these functions. Any value greater than or equal to zero
is valid.

● “get” functions: None of these functions take any input, but instead fetch stored statistics
or calculate a new statistic and return the requested statistic.

7 / 24

Loggers

This set of modules handles the creation of activities, which are individual reclamation
events, for the purpose of organizing data to display in the frontend.

logger:

Function Name Equivalence
Partitions

Boundary Values Example Input Expected Output

Logger Malformed strings,
Valid strings

“” - empty string,
“HandleContainer”

“” - empty string Exception

 “HandleContainer” http.Handler, a new
handler which has
logging capabilities

The Logger function takes as input a string signifying a request for a resource or process

that our system offers. The expected string for each resource or process is hardcoded, and any
string that does not exactly match one of those options is considered malformed. In the case of
a valid string, the function should return a new HTTP request handler than has logging
capabilities. Otherwise the function will throw an exception.

activityLog:

Function Name Equivalence
Partitions

Boundary Values Example Input Expected Output

createActivity Malformed containers,
Valid containers,
Times before
handler.Start,
Times after
handler.Start

Container with any unset
fields,
Container with all fields
set,
Times before
handler.Start,
Times after handler.Start

Container with
an unset field

Exception

 Time before
handler.Start

Exception

 Container with
all fields set +
time after
handler.Start

ActivityLog, a struct
containing
information about
the reclamation
activity

This function takes two inputs: a container that has been reclaimed, and a time at which

that reclamation occurred. If the container is malformed (that is, has any unset attributes) or if
the given time is before the HTTP request handler was created, the input is deemed invalid and
an exception is thrown. Otherwise an activity is created and stored, which represents the
reclamation event and will be used for data display purposes in the frontend.

8 / 24

Talkers

This set of modules handles communicating with components of our system outside of
the backend: the frontend, AWS, and MongoDB. These modules mostly rely on and build
around libraries, and as a result involve little of our own code.

awsModule:

Function Name Equivalence
Partitions

Boundary Values Example Input Expected
Output

downloadObject Names of S3 buckets
and objects that do
not exist,
Names of S3 buckets
and objects that do
exist

Name of S3 bucket or
object that does not
exist,
Names of S3 bucket
and object that do
exist

Name of S3
bucket or object
that does not exist

Exception

 Names of S3
bucket and object
that do exist

S3 object
contents
downloaded to
file

uploadUsed Files that do not exist
on the host machine,
Files that do exist on
the host machine,
Names of S3 buckets
that do not exist,
Names of S3 buckets
that do exist

File that does not
exist on host machine
or S3 bucket that
does not exist,
File that does exist on
host machine and S3
bucket that does exist

File that does not
exist on host
machine or S3
bucket that does
not exist

Exception

 File that does
exist on host
machine and S3
bucket that does
exist

N/A

connectToAWS Strings of regions that
do not exist,
Strings of regions that
do exist

String of region that
does not exist,
String of region that
does exist

String of region
that does not exist

Exception

 String of region
that does exist

An AWS
connection
session

The rationale for these testing criteria is as follows:

● downloadObject: This function takes as input an S3 storage bucket name and the name
of an object file to retrieve from that bucket. If either does not exist (or cannot be
connected to due to invalid credentials or permissions) then the function will throw an
exception. Otherwise the contents of the S3 object will be downloaded into a file on the
host machine.

9 / 24

● uploadUsed: This function takes as input the name of a file on the host machine to
upload to S3 and the name of an S3 storage bucket to upload the file into. If either does
not exist (or the bucket cannot be connected to) then this function throws an exception.
Otherwise the upload is successful and no output is produced.

● connectToAWS: The only input for this function is a string representing the region of
AWS servers to connect to (e.g. “us-east-1”). If the string is invalid, the connection will
fail and the function will throw an exception. Otherwise the connection is successful and
the connection session is returned.

databaseModule:

Function Name Equivalence
Partitions

Boundary Values Example Input Expected
Output

mongoSession Invalid URL strings for
MongoDB connection,
Valid URL strings for
MongoDB connection

Invalid URL string for
MongoDB connection,
Valid URL string for
MongoDB connection

Invalid URL string
for MongoDB
connection

Exception

 Valid URL string
for MongoDB
connection

MongoDB
connection
session

storeActivity Malformed activities,
Properly formed
activities,
Invalid pointers to a
MongoDB database,
Valid pointers to a
MongoDB database,
String names of
collections that do not
exist in the database,
String names of
collections that do
exist in the database

Malformed activity,
Properly formed
activity,
Invalid pointer to a
MongoDB database,
Valid pointer to a
MongoDB database,
String name of
collection that does
not exist in the
database,
String name of
collection that does
exist in the database

Malformed
activity, invalid
pointer to a
MongoDB
database, or
string name of
collection that
does not exist in
the database

Exception

 Properly formed
activity, valid
pointer to a
MongoDB
database, and
string name of
collection that
does exist in the
database

N/A

getActivities Invalid pointers to a
MongoDB database,
Valid pointers to a
MongoDB database,
String names of
collections that do not
exist in the database,
String names of

Invalid pointer to a
MongoDB database,
Valid pointer to a
MongoDB database,
String name of
collection that does
not exist in the
database,

Invalid pointer to
a MongoDB
database or string
name of collection
that does not exist
in the database

Exception

10 / 24

collections that do
exist in the database

String name of
collection that does
exist in the database

 Valid pointer to a
MongoDB
database and
string name of
collection that
does exist in the
database

List of all
reclamation
activities in the
specified
collection in the
given database

getByDate Invalid pointers to a
MongoDB database,
Valid pointers to a
MongoDB database,
String names of
collections that do not
exist in the database,
String names of
collections that do
exist in the database,
Pairs of datetimes in
which the “from”
occurs after the “to”,
Pairs of datetimes in
which the “from”
occurs before the “to”

Invalid pointer to a
MongoDB database,
Valid pointer to a
MongoDB database,
String name of
collection that does
not exist in the
database,
String name of
collection that does
exist in the database,
Pair of datetimes in
which the “from”
occurs after the “to”,
Pair of datetimes in
which the “from”
occurs before the “to”

Invalid pointer to
a MongoDB
database, string
name of collection
that does not exist
in the database,
or pair of
datetimes in
which the “from”
occurs after the
“to”

Exception

 Valid pointer to a
MongoDB
database, string
name of collection
that does exist in
the database, and
pair of datetimes
in which the
“from” occurs
before the “to”

List of all
reclamation
activities that
occurred between
the “from” and
“to” datetimes
found in the
specified
collection in the
given database

removeAll Invalid pointers to a
MongoDB database,
Valid pointers to a
MongoDB database,
String names of
collections that do not
exist in the database,
String names of
collections that do
exist in the database

Invalid pointer to a
MongoDB database,
Valid pointer to a
MongoDB database,
String name of
collection that does
not exist in the
database,
String name of
collection that does
exist in the database

Invalid pointer to
a MongoDB
database or string
name of collection
that does not exist
in the database

Exception

 Valid pointer to a
MongoDB
database and
string name of
collection that
does exist in the
database

N/A

11 / 24

getTotals See above See above See above Aggregate log,
containing
statistics on all
containers
reclaimed up to
the time of the
request

getUsage See above See above See above Unsigned 32 bit
integer,
representing the
total amount of
bytes of storage
in use by
reclaimed
containers up to
the time of the
request

getReclamation See above See above See above Unsigned 32 bit
integer,
representing the
total number of
bytes of storage
reclaimed up to
the time of the
request

getContainers See above See above See above Integer,
representing the
total number of
containers
reclaimed up to
the time of the
request

getFragRate See above See above See above 64 bit float,
representing the
average
fragmentation
(i.e. expiration)
percentage of all
containers
reclaimed up to
the time of the
request

getSavings See above See above See above 64 bit float,
representing the
monetary savings
(in USD) from all
reclaimed
containers up to
the time of the
request

getCosts See above See above See above 64 bit float,
representing the
monetary cost (in
USD) of storage

12 / 24

still in use by all
containers
reclaimed up to
the time of the
request

The rationale for these testing criteria is as follows:

● All functions other than mongoSession take essentially the same parameters (a
database to pull from, and a collection in that database with objects to pull) and respond
to malformed input in the same manner, so for the sake of brevity several rows in the
above table were omitted.

● mongoSession: This function takes as input a string, the URL of a MongoDB database to
connect to. If the string is not properly formed or does not represent a database that
exists, the connection will fail and the function will throw an exception. Otherwise the
connection will succeed and the connection session is returned.

● storeActivity: This function takes a pointer to a database and a string name of a
collection in that database, as well as a reclamation activity struct. If either is malformed
or invalid, the function throws an exception. Otherwise the struct is converted to JSON
and stored in the specified collection in the given database.

● getActivities: As with storeActivity, this function takes a pointer to a database and a
string name of a collection in that database. If either is malformed or invalid, the function
throws an exception. Otherwise all reclamation activities in the collection are returned.

● getByDate: This works exactly the same as getActivities, with the added parameters of a
start date and end date between which to retrieve all activities. Seeing as the end date
must occur after the start date, a pair of such inputs with an end date occurring before
the start date will also cause an exception. Otherwise all activities between those dates
are returned.

● removeAll: This function takes the same database and collection identifiers and,
provided both are correct, deletes everything from the collection and returns no output.

● getTotals: This function calls all of the following functions using the same database and
collection identifiers as the above functions. If either identifier is invalid, an exception is
thrown. Otherwise the function returns the aggregate of the returned values from the
following functions:

○ getUsage
○ getReclamation
○ getContainers
○ getFragRate
○ getSavings
○ getCosts

13 / 24

Handler

This group of modules consists of some thin wrappers around library functions that allow
us to create a set of handler functions all tied to one HTTP request router. We have four routes
set up, as follows:

● /container: The route to send a request to reclaim a container. A request for this should
contain in its body a JSON file that lists metadata about the requested container.

● /overview: The route to send a request for aggregate reclamation data from the backend.
Used only by the frontend when rendering graphs that show aggregate data.

● /activity/{from}/{to}: The route to send a request for reclamation activity data over a range
of dates, starting at “from” and ending at “to”. Used only by the frontend when rendering
graphs that show a range of activity data.

● /container/{name}: The route to send a request for a JSON metadata file for the
container with the given name. This route is mainly for administrative purposes for IBM.

handler:

Function Name Equivalence
Partitions

Boundary Values Example Input Expected
Output

handleContainer Invalid HTTP
response writers,
Valid HTTP response
writers,
Malformed HTTP
requests,
Properly formed
HTTP requests

Invalid HTTP
response writer,
Valid HTTP response
writer,
Malformed HTTP
request,
Properly formed
HTTP request

Invalid HTTP
response writer or
malformed HTTP
request

Exception

 Valid HTTP
response writer
and properly
formed HTTP
request

HTTP Response
OK

retrieveOverview See above See above See above HTTP Response
OK, with
aggregate data

retrieveActivity See above See above See above HTTP Response
OK, with range of
activity data

retrieveActivity See above See above See above HTTP Response
OK, with JSON
container
metadata file in
its body

In general, all of these functions follow the same format: take as input an HTTP

response writer (a source to write HTTP responses to) and an HTTP request. If either is invalid

14 / 24

or malformed, the function will throw an exception. Otherwise, the function outputs an HTTP OK
response to the given response writer, along with any requested resource.

httpListener:

Function Name Equivalence
Partitions

Boundary Values Example Input Expected
Output

startListener N/A N/A N/A N/A

This function takes no input and produces no output. Instead, it starts and opens the

router, allowing HTTP requests to come in. This function is simple to test: if after executing it,
the system is not open for requests then the function has failed. Otherwise it has succeeded.

router:

Function Name Equivalence
Partitions

Boundary Values Example Input Expected
Output

newRouter N/A N/A N/A A router with the
aforementioned
routes attached
to it, as well as
logging
capabilities

Similar to the httpListener function, this function takes no input. However it does produce

output, in the form of an HTTP request router. To verify that this function works correctly, we will
make sure that all routes are open and working correctly via their respective handler functions.

Reclamation

This set of modules is responsible for acting as a driver for all functionality necessary to
reclaim a container. This includes creating a container struct for a JSON container metadata file,
handling file and bucket names (obtained from the container metadata) when dealing with AWS,
and maintaining stored container metadata files after reclamation.

container:

Function Name Equivalence
Partitions

Boundary Values Example Input Expected
Output

newContainer Malformed HTTP
requests,
Properly formed
HTTP requests

Malformed HTTP
request,
Properly formed
HTTP request

Malformed HTTP
request

Exception

 Properly formed
HTTP request

A container struct
which holds all
important

15 / 24

attributes from
the JSON file
given in the
HTTP request

reformatLayout Containers with any
attributes not set,
Containers with all
attributes properly set

Container with any
attributes not set,
Container with all
attributes properly set

Container with
any attributes not
set

Exception

 Container with all
attributes properly
set

N/A

expiredBytes Containers with any
attributes not set,
Containers with all
attributes properly set

Container with any
attributes not set,
Container with all
attributes properly set

Container with
any attributes not
set

Exception

 Container with all
attributes properly
set

Unsigned 32 bit
integer,
representing the
number of bytes
in the container
that are expired

The rationale for these testing criteria is as follows:

● newContainer: This function takes the JSON from the body of the HTTP request and
unmarshals it into a container struct. If the request is malformed (e.g. has no JSON in
the body) then an exception is thrown. Otherwise the container struct is made and
returned.

● reformatLayout: This function takes in a container struct and reads through its contents
to find any expired chunks, which are removed from the container. If the container is
malformed in any way, this function will instead throw an exception. Otherwise no output
is generated.

● expiredBytes: Similar to reformatLayout, this function takes in a container and reads
through its contents. If a malformed container is given, an exception is thrown. Otherwise
the function returns the amount of bytes in the container that are expired.

reclamationModule:

Function Name Equivalence
Partitions

Boundary Values Example Input Expected
Output

reclaim Containers with any
attributes not set,
Containers with all
attributes set,
Malformed AWS
connection sessions,
Properly formed AWS
connection sessions,
String names of

Container with any
attribute not set,
Container with all
attributes set,
Malformed AWS
connection session,
Properly formed AWS
connection session,
String name of bucket

Container with
any attribute not
set, malformed
AWS connection
session, or string
name of bucket
that does not exist
in S3

Exception

16 / 24

buckets that do not
exist in S3,
String names of
buckets that do exist

that does not exist,
String name of bucket
that does exist

 Container with all
attributes set,
properly formed
AWS connection
session, and
string name of
bucket that does
exist in S3

N/A

getUsedBytes See above See above See above N/A

putUsedBytes See above See above See above N/A

reformatData Containers with any
attributes not set,
Containers with all
attributes set,
Invalid output
filename strings,
Valid output filename
strings,
String filenames of
input files that do not
exist on the host
machine,
String filenames of
input files that do exist
on the host machine

Container with any
attribute not set,
Container with all
attributes set,
Invalid output
filename string,
Valid output filename
string,
String filename of
input file that does not
exist on the host
machine,
String filename of
input file that does
exist on the host
machine

Container with
any attribute not
set, invalid output
filename string, or
string filename of
input file that does
not exist on the
host machine

Exception

 Container with all
attributes set,
valid output
filename string,
and string
filename of input
file that does exist
on the host
machine

N/A

The rationale for these testing criteria is as follows:

● reclaim: This function, like many others already covered, takes in identifiers for
connecting to AWS and downloading or uploading files. As such, anything wrong with
the connection session or S3 bucket name will cause an exception to be thrown.
Additionally, this function takes in a container struct for a container that is to be
reclaimed. If that struct is malformed, and exception will be thrown. If all parameters are
valid, no output is generated and execution continues.

● getUsedBytes: This function takes the same parameters and operates in the same way
as the reclaim function, with the addition of calling the function that downloads a file from
S3--in this case, the container file referenced in the container struct.

17 / 24

● putUsedBytes: This function operates in the same way as the reclaim function, with the
addition of calling the functions that reformat a container file by removing its expired
chunks, and then uploading the reformatted file to S3.

● reformatData: This function takes in the container struct used by the previous functions,
as well as the name of a file to read in (the container file that was previously
downloaded) and the name of a file to output to. If the container is malformed, an
exception is thrown. If either filename is malformed or the file to read does not exist, an
exception is thrown. Otherwise no output is generated and the reformatted file is
uploaded to S3.

Core

This module is simply a driver for all of the functionality that the backend provides. It
performs little computation of its own, instead handling the function calls the necessary for any
requested service or resource.

core:

Function Name Equivalence
Partitions

Boundary Values Example Input Expected
Output

processContainer Containers with any
attributes not set,
Containers with all
attributes set

Container with any
attribute not set,
Container with all
attributes set

Container with
any attribute not
set

Exception

 Container with all
attributes set

N/A

getAggregateData N/A N/A N/A Log of aggregate
container and
reclamation data

getActivityData Pairs of datetimes in
which the “from”
occurs after the “to”,
Pairs of datetimes in
which the “from”
occurs before the “to”

Pair of datetimes in
which the “from”
occurs after the “to”,
Pair of datetimes in
which the “from”
occurs before the “to”

Pair of datetimes
in which the
“from” occurs
after the “to”

Exception

 Pair of datetimes
in which the
“from” occurs
before the “to”

List of data
pertaining to
activities that
occurred between
the specified
dates

The rationale for these testing criteria is as follows:

● processContainer: This function takes as input a container struct, then simply sets up
AWS and MongoDB connections and calls the reclaim function. Since no real

18 / 24

computation is performed here, the only error would be in the case of a malformed
container, in which case an exception is thrown. Otherwise no output is generated.

● getAggregateData: This function takes no input and returns the aggregate data on
containers and reclamations as stored in the database. Considering this, the only way to
test this function is to verify that the functions it calls work, and then make sure the
aggregate data is returned from this function properly.

● getActivityData: This function will operate similarly to getAggregateData, with the
exception of taking in a pair of dates. As with other date-range oriented functions before,
those dates are checked and an exception is thrown if the “from” occurs after the “to”.
Otherwise this function returns the list of all activities that occurred within the specified
range of dates.

Despite excluding the frontend, out unit testing is extensive since this project is very

backend-heavy. Adding to the amount of tests we will need to run to verify our work is the fact
that many functions take more than one parameter (particularly those interacting with AWS or
MongoDB), wherein each additional parameter at least doubles the amount of tests that need to
be done in order to catch every possible combination of values from different equivalence
partitions. This results in a considerable number of unit tests to design and run, but we have laid
out an effective blueprint for exactly how to design those tests to verify that all of our backend
code functions correctly under any given input.

19 / 24

3 Integration Testing

For integration testing, we will be focusing on testing whether the components that
compose our software, and the modules that compose the backend of our software, are passing
data correctly to one another. This is paramount for our product as often the output of one
module is used as the input of another. Therefore, all of our modules must produce the correct
data in order for our product to correctly provide a requested process or resource. Through
rigorous integration testing, we will ensure that our product’s components and modules work
together efficiently and accurately.

Figure 1: High Level Architecture

Our product is follows a layered architecture in which each layer has components

responsible for different aspects of our project. These layers, as seen above in Figure 1, are the
database, service, and presentation layers. The database layer consists of Amazon Web
Services (specifically, the S3 data storage service) and a MongoDB database. The service layer
is where the majority of our software exists, written in Go. Finally, the presentation layer is the
frontend of our software, made with ReactJS and D3JS. In order to make sure our product is
fully integrated, we will test that each component is working as intended with one another.

In order to test these components we will create variously formatted containers and
make reclamation requests for them. A container reclamation event will involve the use of each

20 / 24

component in the system depicted in Figure 1, allowing us to test the behavior and output of
each component to ensure that everything is running correctly. Due to the nature of the
containers having quite a few attributes, this will also allow us to effectively test for edge cases.
These containers will be sent through our three main types of backend modules: cost-benefit
analysis modules, the reclamation modules, and the talking modules.

Service Layer

Figure 2: Backend Modules in Service Layer

We will start out with testing the backend modules in the service layer, since this

comprises the majority of the functionality of our project and is key in making sure that
everything is integrated correctly. To do this we will have to test the modules that make up the
layer, as seen in Figure 2 above. Making sure that these modules are integrated correctly
ensures that our product has a strong foundation that can support the other two layers.

Cost/Benefit Modules:

First, we will test the integration of our cost-benefit analysis modules since these
modules are the first that interact with a requested container. The cost-benefit analysis modules
consist of an analysis module and a statistics tracking module. Note that the analysis module
talks to the statistics tracking module, and acts as a communication point with the core module
when concerning cost-benefit analysis functionality.

These modules receive a container layout from an HTTP request and return both a
boolean that indicates whether the container is worth reclaiming and a custom struct that
contains statistics about the container. In order to test that this is working properly, we will pass
through containers that are eligible for reclamation and containers that do not meet the

21 / 24

threshold for reclamation. Doing this will allow us to test that the modules are behaving correctly
and passing back the data we expect to either stop reclamation and send a relevant response
or to continue with the reclamation process.

Reclamation Modules:

Next, we will test our reclamation modules. Should a container meet the threshold of
expired data for reclamation, the container will then be sent as input to the reclamation modules.
This means that only containers that are eligible for reclamation are being worked on in these
modules, and our tests should reflect that.

Not also that the reclamation process is strongly tied to the presentation layer seen in
Figure 1 in two ways: 1) during a container’s reclamation, we must request the actual container
from S3, and 2) after a container is reclaimed it must be sent back to S3 and its updated
metadata JSON file must be stored in the database. Considering this, in order to effectively
cover the reclamation modules we must also cover the talking modules, which handle
communicating with the components in the presentation layer.

Talking Modules:

The talking modules are considerably important to our product since they communicate
with our database, frontend, and AWS. In order to test these modules, we will pass through both
correctly and incorrectly formatted containers. The correctly formatted containers will allow us to
test that all of the modules we’ve built are working correctly with valid input. For this purpose we
define correct behavior as follows:

● The database should have an updated JSON metadata file for the container.
● The frontend should accurately show statistical data about the container.
● We should be able to verify that the container has been updated in S3 (through the web

dashboard system provided by AWS).

By passing through incorrectly formatted containers, we can test that our error handling
is working correctly and that we are sending back the appropriate error messages if necessary.
After testing of the talking modules is complete, we will have verified that our product works as
intended and all of our modules are connected properly.

Database Layer

After making sure that the service layer is fully integrated, we need to test that the
backend can correctly communicate with S3 data storage and the database. To do this, we will
be using testing containers. To make sure that AWS is integrated with the rest of the product we
will be using the backend to push and pull containers from the cloud. This will ensure that our
backend has the credentials and capability to move containers whenever necessary. To test the
integration of our database, we will write container statistics to it and make sure we are able to
retrieve those same statistics. After testing the integration this layer and making sure that
everything is working as intended, we will move on to testing the presentation layer.

22 / 24

Presentation Layer

Since our product is very focused on the backend process of reclamation, frontend is of
smaller concern to us and thus is the last component we will test. This component
communicates with the backend using HTTP requests to get data about containers and
reclamations with which to fill in rendered charts. In order to test the integration of the frontend
with the backend we will be using several HTTP requests to retrieve data from the other layers.

As discussed in the Unit Testing section, there are two types of requests that the

frontend can make to the backend: aggregate reclamation data, and date-ranged reclamation
data. In the former case, once the frontend has been started up we will visit the appropriate web
page for aggregate data and verify that all of the aggregate data, as seen in the database, is
being rendered in a consumer-facing UI.

In the latter case, we will visit the web page for date-ranged data and specify a valid

range of dates, after which we will verify that all reclamation activities occurring within the
specified range, as seen in the database, are being rendered in a similar consumer-facing UI.

By performing this testing of the presentation layer, we ensure that not only is the

presentation layer correctly communicating with the service layer, but also that the service layer
is correctly communicating with the database layer, since these requests from the frontend are
for resources held in the database. This will show full integration of our product, proving that all
of the components and modules that we have designed are working properly as one system.

4 Usability Testing

Database storage administrator's will utilize the frontend to visualize patterns and trends
in application activity from the backend. This requires that our frontend is vetted and conforms
to UI/UX best practices. Our frontend design has been meticulously planned through iterative
mockup design with our client. However, usability testing will strengthen our design by providing
insight from a larger pool of users.

Population

The population we are meant to satisfy is database storage administrators. This means
we can assume that our audience has some level of technical expertise. The population will
know the inner workings of database storage reclamation/administration, but may not have any
programming expertise. Due to this, our frontend displays any relevant reclamation data while
omitting any unnecessary coding/implementation details.

23 / 24

Methods

Our testing plan will comprise two separate parts:
● Categorical Acceptance:​ User will be given flashcards with two different categories

written on them. They will be asked to match them according to what they find most
logical.

● Live Usability:​ We will record users interacting with our application given a testing
script. The user will be asked to talk out loud about how they think as they are interacting
with the application.

Plan

We plan on selecting a sample of 10-15 individuals, all 18 years of age or older, who
have some level of technical experience. Little to no technical experience will make it difficult for
the users to navigate the items we will ask them to identify, and would be inaccurate to the
intended audience of our frontend. We will perform this test on users individually and start them
with the categorical acceptance test. The categorical acceptance test will help us determine how
the user will think about our application prior to ever seeing it. We will use it to determine the
most logical hierarchical layout of our elements as well as an appropriate color pallette. For this
test, we will ask the user to match items from the left column with items in the right column:

Category

Overview Top

Activity Over Time Middle

Activity Details Bottom

Color (color cards can be matched to multiple items in right column)
Blue Costs

Green Savings

Red Storage Bin

Black Percentage

Purple Resource Usage

White Resource Reclamation

After completing this test, users will be provided a testing script so they can complete a

live usability test. The script will include the following steps:
1. Attempt to find the total fragmentation percentage on the webpage. How easy was it to

find on a scale to 1-10? What would you change and what did you like?
2. Repeat step 1 but look for the following 2 items instead: total storage cost, total savings.

24 / 24

3. Try to create a line graph that represents the total storage reclamation activity over the
month of March. How easy was it to find on a scale to 1-10? What would you change
and what did you like?

4. Repeat step 3 except try to find total savings over the month of March.
5. Attempt to find reclamation records for the day of 3/27/18. How many records are for that

day?

While completing this script, we will record the user so that we can see how they interact
with the application. This will help us determine how easily our items were to find, as well as
show us where users thought these items should be. This will give us a clear indication as to
whether or not our application will require any reorganization or additional visual cues.

Results

Once our focus group has completed their individual testing sessions, we will compile
the data and see if we can identify any important patterns. We will do so by creating a table
representing commonality among all users. For example, if 70% of users misidentified item 2 in
our testing script, we will reorganize our layout to resolve this. Similarly, if 70% of users chose
Green as the color that best represented the Savings category, we will adjust our color palette
to match. These tests will help lay out the groundwork for any reorganization (both design and
layout-wise) that will improve our application’s overall usability.

5 Conclusion

Like any software, our product will require a regimen of software testing to verify that it
not only functions correctly under any given inputs and is highly error-resistant, but also that it
satisfies our project sponsor’s goals and is usable by members of our target audience. We have
laid out a plan for exactly how our software will be tested which includes rigorous and lengthy
unit testing, moderate integration testing, and light usability testing.

By creating this test plan and adhering to it we can give a strong assurance to IBM that
this product will appropriately handle any inputs, provide any resources or services requested of
it, and do so in a way that is easy to understand for end-users in our target audience.

